本次演示使用 kafka_2.12-2.5.0
wsl2环境,单机集群

一、下载kafka

http://kafka.apache.org/downloads.html

二、解压

tar -zxvf  kafka_2.12-2.5.0.tgz

三、复制3份

cp -r kafka_2.12-2.5.0.tgz ./kafka-cluster/kafka1/
cp -r kafka_2.12-2.5.0.tgz ./kafka-cluster/kafka2/
cp -r kafka_2.12-2.5.0.tgz ./kafka-cluster/kafka3/

四、新建3个kafka_data目录,用于存放kafka日志数据,不建议放在根目录中

注意:kafka-server每次启动前,要先清空掉日志文件

cd kafka-cluster
mkdir data_kafka1
mkdir data_kafka2
mkdir data_kafka3

至此,文件目录如下

├── data_kafka1
├── data_kafka2
├── data_kafka3
├── kafka_1
├── kafka_2
└── kafka_3

五、先启动zookeeper集群

看zookeeper集群部署文档,本次演示中,zk集群节点如下

127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183

六、设置各个kafka的server.properties文件信息

注意有坑

如果listeners配置的host是localhost或者127.0.0.1,在windows的linux子系统内部署的Kafka集群,windows中将无法访问到此集群

解决方法:将listener的host配置为linux机的局域网地址,或者host,后续用节点地址来访问kafka集群

1.在linux子系统中执行以下命令,拿到在局域网中本机地址,(即inet节点的172.23.112.173)

ifconfig

############
eth0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST>  mtu 1500
        inet 172.23.112.173  netmask 255.255.240.0  broadcast 172.23.127.255
        inet6 fe80::215:5dff:fe73:d023  prefixlen 64  scopeid 0x20<link>
        ether 00:15:5d:73:d0:23  txqueuelen 1000  (Ethernet)
        RX packets 22748  bytes 34616063 (34.6 MB)
        RX errors 0  dropped 0  overruns 0  frame 0
        TX packets 3378  bytes 246784 (246.7 KB)
        TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING>  mtu 65536
        inet 127.0.0.1  netmask 255.0.0.0
        inet6 ::1  prefixlen 128  scopeid 0x10<host>
        loop  txqueuelen 1000  (Local Loopback)
        RX packets 745864  bytes 146147115 (146.1 MB)
        RX errors 0  dropped 0  overruns 0  frame 0
        TX packets 745864  bytes 146147115 (146.1 MB)
        TX errors 0  dropped 0 overruns 0  carrier 0  collisions 0

2.将此地址配置到server.properties的listeners中

文件配置

./kafka1/config/server.properties

# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# see kafka.server.KafkaConfig for additional details and defaults

########### Server Basics ###########

# The id of the broker. This must be set to a unique integer for each broker.
	## 注意修改此处,每个broker(分片)的id必须唯一
broker.id=1

########### Socket Server Settings ###########

# The address the socket server listens on. It will get the value returned from
# java.net.InetAddress.getCanonicalHostName() if not configured.
#   FORMAT:
#     listeners = listener_name://host_name:port
#   EXAMPLE:
#     listeners = PLAINTEXT://your.host.name:9092
# listeners=PLAINTEXT://127.0.0.1:9092
	## 注意修改此处,每个broker须监听不同端口
listeners = PLAINTEXT://172.23.112.173:9092

# Hostname and port the broker will advertise to producers and consumers. If not set,
# it uses the value for "listeners" if configured.  Otherwise, it will use the value
# returned from java.net.InetAddress.getCanonicalHostName().
# advertised.listeners=PLAINTEXT://127.0.0.1:9092

# Maps listener names to security protocols, the default is for them to be the same. See the config documentation for more details
#listener.security.protocol.map=PLAINTEXT:PLAINTEXT,SSL:SSL,SASL_PLAINTEXT:SASL_PLAINTEXT,SASL_SSL:SASL_SSL

# The number of threads that the server uses for receiving requests from the network and sending responses to the network
num.network.threads=3

# The number of threads that the server uses for processing requests, which may include disk I/O
num.io.threads=8

# The send buffer (SO_SNDBUF) used by the socket server
socket.send.buffer.bytes=102400

# The receive buffer (SO_RCVBUF) used by the socket server
socket.receive.buffer.bytes=102400

# The maximum size of a request that the socket server will accept (protection against OOM)
socket.request.max.bytes=104857600


########### Log Basics ###########

# A comma separated list of directories under which to store log files
	## 注意修改此处,每个broker的日志地址须不一样
log.dirs=/home/jiangyi/env/kafka/kafka_cluster/data_kafka1/log

# The default number of log partitions per topic. More partitions allow greater
# parallelism for consumption, but this will also result in more files across
# the brokers.
num.partitions=1

# The number of threads per data directory to be used for log recovery at startup and flushing at shutdown.
# This value is recommended to be increased for installations with data dirs located in RAID array.
num.recovery.threads.per.data.dir=1

########### Internal Topic Settings  ###########
# The replication factor for the group metadata internal topics "__consumer_offsets" and "__transaction_state"
# For anything other than development testing, a value greater than 1 is recommended to ensure availability such as 3.
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1

########### Log Flush Policy ###########

# Messages are immediately written to the filesystem but by default we only fsync() to sync
# the OS cache lazily. The following configurations control the flush of data to disk.
# There are a few important trade-offs here:
#    1. Durability: Unflushed data may be lost if you are not using replication.
#    2. Latency: Very large flush intervals may lead to latency spikes when the flush does occur as there will be a lot of data to flush.
#    3. Throughput: The flush is generally the most expensive operation, and a small flush interval may lead to excessive seeks.
# The settings below allow one to configure the flush policy to flush data after a period of time or
# every N messages (or both). This can be done globally and overridden on a per-topic basis.

# The number of messages to accept before forcing a flush of data to disk
#log.flush.interval.messages=10000

# The maximum amount of time a message can sit in a log before we force a flush
#log.flush.interval.ms=1000

########### Log Retention Policy ###########

# The following configurations control the disposal of log segments. The policy can
# be set to delete segments after a period of time, or after a given size has accumulated.
# A segment will be deleted whenever *either* of these criteria are met. Deletion always happens
# from the end of the log.

# The minimum age of a log file to be eligible for deletion due to age
log.retention.hours=168

# A size-based retention policy for logs. Segments are pruned from the log unless the remaining
# segments drop below log.retention.bytes. Functions independently of log.retention.hours.
#log.retention.bytes=1073741824

# The maximum size of a log segment file. When this size is reached a new log segment will be created.
log.segment.bytes=1073741824

# The interval at which log segments are checked to see if they can be deleted according
# to the retention policies
log.retention.check.interval.ms=300000

########### Zookeeper ###########

# Zookeeper connection string (see zookeeper docs for details).
# This is a comma separated host:port pairs, each corresponding to a zk
# server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
# You can also append an optional chroot string to the urls to specify the
# root directory for all kafka znodes.
	## 注意修改此处,填入本地zk地址,多个逗号间隔
zookeeper.connect=127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183

# Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=18000


########### Group Coordinator Settings ###########

# The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance.
# The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms.
# The default value for this is 3 seconds.
# We override this to 0 here as it makes for a better out-of-the-box experience for development and testing.
# However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup.
group.initial.rebalance.delay.ms=0

./kafka2/config/server.properties

## 与./kafka1/config/server.properties一致,只展示修改部分,省略......

########### Server Basics ###########

	## 注意修改此处,每个broker(分片)的id必须唯一
broker.id=2

########### Socket Server Settings ###########

	## 注意修改此处,每个broker须监听不同端口
listeners = PLAINTEXT://172.23.112.173:9093

########### Log Basics ###########

	## 注意修改此处,每个broker的日志地址须不一样
log.dirs=/home/jiangyi/env/kafka/kafka_cluster/data_kafka2/log

./kafka3/config/server.properties

## 与./kafka1/config/server.properties一致,只展示修改部分,省略......

########### Server Basics ###########

	## 注意修改此处,每个broker(分片)的id必须唯一
broker.id=3

########### Socket Server Settings ###########

	## 注意修改此处,每个broker须监听不同端口
listeners = PLAINTEXT://172.23.112.173:9094

########### Log Basics ###########

	## 注意修改此处,每个broker的日志地址须不一样
log.dirs=/home/jiangyi/env/kafka/kafka_cluster/data_kafka3/log

七、编写本地集群启动脚本

./start-cluster.sh

#!/bin/sh

## kafka启动前要删除所有本地日志
rm -rf /home/jiangyi/env/kafka/kafka_cluster/data_kafka*/*

/home/jiangyi/env/kafka/kafka_cluster/kafka_1/bin/kafka-server-start.sh -daemon /home/jiangyi/env/kafka/kafka_cluster/kafka_1/config/server.properties
echo "kafka-cluster broker 1 started"

/home/jiangyi/env/kafka/kafka_cluster/kafka_2/bin/kafka-server-start.sh -daemon /home/jiangyi/env/kafka/kafka_cluster/kafka_2/config/server.properties
echo "kafka-cluster broker 2 started"

/home/jiangyi/env/kafka/kafka_cluster/kafka_3/bin/kafka-server-start.sh -daemon /home/jiangyi/env/kafka/kafka_cluster/kafka_3/config/server.properties
echo "kafka-cluster broker 3 started"


echo "kafka-cluster started!!!"

脚本设置为可运行

chmod a+x ./*.sh

至此,当前目录结构

├── data_kafka1
├── data_kafka2
├── data_kafka3
├── kafka_1
├── kafka_2
├── kafka_3
└── start-cluster.sh

八、运行启动脚本

启动

./start-cluster.sh

## print
kafka-cluster broker 1 started
kafka-cluster broker 2 started
kafka-cluster broker 3 started
kafka-cluster started!!!

九、测试topic

创建test topic

./kafka_1/bin/kafka-topics.sh --create --zookeeper 127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183 --replication-factor 1 --partitions 1 --topic test

查看所有topic

./kafka_1/bin/kafka-topics.sh --list --zookeeper 127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:2183

十、测试producer和consumer

producer(为测试集群,特意监听不同的端口)

./kafka_2/bin/kafka-console-producer.sh --bootstrap-server 172.23.112.173:9094 --topic test

consumer

./kafka_3/bin/kafka-console-consumer.sh --bootstrap-server 172.23.112.173:9092 --topic test

producer输入信息,consumer能收到即成功